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ORIGIN OF THE WORK

This White Paper “Requirements and architecturbiwitnodelling context” has been produced by the
Model-Based Systems Engineering technical committed=IS (French INCOSE chapter).
That committee deals with:
» Improvement of knowledge and skills around use oflefs in systems engineering field during
all system life cycle stages
» Share of industrial feedback on approach and issusstup and deploy MBSE methodology in
their company
» Development of specific topics concerned by MBSEML, requirements within models,
simulation as early validation means...) and develamnof small projects to address some of
those topics in coordination with other technigahenittees.
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INTRODUCTION

Purpose

The purpose of this document is to provide indakfdéedback and challenges on the way Model-Based
Systems Engineering can be used to define systgnireenents and system architecture with tracegbilit
to system requirements.

Document lists different modeling strategies argbeamted benefits and efforts ranging from theafse
models for illustration up to the use of modelsdpecification with full support of traceability thin
models.

Scope

As stated by ISO/IEC/IEEE 24765:2010 (System afftdvaoe engineering — Vocabulary), System
Engineering is aimterdisciplinary approach governing the total teatal and managerial effort
required to transform a set of customer needs, @gfiens, and constraints into a solution and to
support that solution throughout its life.

Amongst technical efforts, ISO/IEEE/IEC 15288:2H)p$tandard defines system lifecycle processes
amongst which technical processes that deal witteay requirements and architecture definition:

» Stakeholders Needs and Requirements definition

» System Requirements definition

» Architecture definition

» Design definition

e System analysis

Note: appendi®.1 recalls purpose of each of those processeatasl ¢n ISO/IEC/IEEE 15288:2015.

This paper concerns use of models in industryénsttope of technical processes presented above with
special focus on “stakeholder needs and requiresyiinition”, “system requirements definition” and
“architecture definition”. Models are obviously @algsed to support “Design definition” and “System
analysis” but this document does not insist muckhose activities.

Main discussion concerns the gradual use of maglelinivity to support requirement engineering and
architecture definition.

Document organization

Chapter 2 provides some useful definitions abositesy engineering concerning concepts that will be
widely used in the whole document. It will allowiggiment of readers on vocabulary if needed.

Chapter 3 is the core chapter of this white paipegives a set of industrial feedbacks about usafies
engineering models to support system requiremegiisition and architecture definition processes.
Those usages are presented according to graduaaapes in the use of models and for each approach
we have tried to associate benefits and efforts.
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Chapter 4 is a set of common agreements shareeédetall contributors of this white paper regarding
models to support requirement engineering and tacthire definition.

Chapter 5 suggests a conclusion and provides sefie@nces on external documents available on the
web.

Chapter 6 is a set of appendices that give dedailome elements discussed in this document.
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1 USEFUL DEFINITIONS

Before diving into issues and methodological axesblutions, it is important to clearly define twope
of work and recall or refine relevant terminology.

MBSE (Model-Based Systems Engineering)
Please refer to “MBSE introduction” presentatioaitable here: <link to provide>. It provides allated
definitions and explains potential benefits.

System Architecture

As stated in ISO/IEC/IEEE 42010:2011, system aechitre is defined by “fundamental concepts or
properties of a system in its environment embodigth elements, relationships, and in the prirespbf
its design and evolution”.

The architecture can be represented according/eraleviewpoints and at several abstraction or
granularity levels. Viewpoints commonly used are fibllowing:

» Theoperational architecture viewpoint, that describes the system organization in tefms o
black box functions or use cases and associatedtap®al scenarios. It represents services, sub-
services and interactions between themselves mdvidresponse to desired capabilities from
stakeholders in operational environment/context.

» Thelogical architecture viewpoint of a system is composed of a set of related teehni
concepts and principles that support the logicarafon of the system. It includes a functional
architecture viewpoint, a behavioral architectusswoint, a temporal architecture viewpoint and
a partition of functions into system componentsi¢ting blocks) excluding implementation or
technological issuefcompleted fronSeBoK[2] V1.4]

0 Thefunctional architecture viewpoint describes the inside system organization in terms
of “white box” functions, their interfaces (inputsitputs) and their decomposition in sub-
functions down to a level where function transfotioracan be entirely allocated to a
building block. Generally decomposition shows disttion of data/energy flows from
inputs of parent function to its outputs and betwsgb functions.

0 Thebehavioral architecture viewpoint describes system functions behavior in terms of
both data/energy flows and control flows. Conttols describe execution logics
(sequence, decision, synchronization...) of functiama conditions of
activation/deactivation of functions (events, efidmother function...).

0 Thetemporal architecture viewpoint describes the frequency of execution of functions
and defines the synchronous or asynchronous aggefctsctions (created from SeBoK).

» Thephysical architecture viewpoint describes the arrangement of physieahehts (system
elements and physical interfaces), which provitiesdiesign solution of system of interest, and is
intended to satisfy logical architecture elementd system requirements. It is implementable
through technologies

These viewpoints are intended to organize andtsieithe system specification, not to describe
implementation discipline solutions, such as meidsasoftware or hardware.
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Requirement (source: ISO 29148:2011)
A requirement is a statement that translates oresses a need and its associated constraints and
conditions.

Constraint vs. functional requirement
Requirements can be classified into several caegjand there exist several classifications. We can
mention standard ISO/IEC/IEEE 29148:2011 "Requirgnkgineering" section 9.4.2.3 (ISO 2011) for a
suggestion (see appendix 7.4) but classificatida &dapt to each company.
There also exist specialized classifications adogrtb industrial domains like ARP4754a for aeraspa
and ECSS for space industry.
As minimal distinction we find:

- Functional requirements defining what the systesall sto,

- Non-functional requirements and constraints, rafgrto qualities the system shall have.
A constraint is a limitation or implied requiremehat constrains the design solution or impleméortat
of the systems engineering process and is not eladohg by the enterprise. [IEEE 1220-2005 IEEE
Standard for the Application and Management ofS3gtems Engineering Process.3.1.5]

Decomposition and allocation

The “System life cycle processes” as describetlén$O/IEC 15288 standard formalize the
decomposition of a system into a set of interacsiygfem elements, each of them being then
implemented for integration into the system.

Requirements on the whole system (“System requinéstieare refined into requirements allocated to
system elements (“Specified requirements”) in ottat the implementation of requirements related to
system elements may be delegated to another haolygh an agreement.

Decomposition and allocation of requirements haveet performed consistently with architectural and/
design definition.

Traceability

Traceability is a technical mean in developmentess used primarily to ensure the continuity and
completeness in the refinement of the need (spatifin and requirement set) in the solution.
Therefore, traceability is not limited to requirentebut to any item or piece of information thaténéo
be managed to guarantee compliance of resultspectations.

The minimal prerequisites from a basic traceabitigchanism are the following:

1 A unique identifier for each item under traceapilit

2 Relationships to link items, with a well-definedvsmntics (e.g. “refine”, “derive”, “verify”,...).
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2 SYSTEMS ENGINEERING APPROACHES: FROM REQUIREMENTS
EXPRESSED IN NATURAL LANGUAGE TO REQUIREMENTS
FORMALIZED WITH MODELS

Many organizations consider nowadays the oppostaaiswitch from purely textual requirements to a
Model-Based approach, where models tend to comptetgen replace the use of free text and acteas th
new contractual baseline. In such a paradigm, mextHanges would replace the traditional textual
specifications flows between stakeholders.

However such a change requires in particular thatakeholders share a common understanding of the
various models involved in the process and that #ygee on new data exchange modalities at
organizational boundaries. This is far from obviauns strongly depends on background, experience and
culture that are naturally different according tanpanies and teams.

This is why in practice, today, organizations témeévolveprogressivelyfrom textual requirements to
model based approaches, trying to change theimniaitevay of working before trying to change their
interfaces with external stakeholders.

Note: models can be used for different purposeglinds very important to clearly define the goal
according to the context (stakeholders culture):

» Use of models for direct formalization of requirert in that case, models will be used for
validation and they shall reflect stakeholders sebdough simple concepts easy to learn like
“messages” exchanged in system of interest arapésational context (sequence diagrams)

» Use of models as intermediate means in order tpatimaturation of requirements that will
remain expressed in natural language. For instdiness can be simulation on models used to
evaluate some ranges of values for specific pedoa® properties. Such models can even be
used as “rationale” of requirements and avoid mplidtation of “useless” requirements.

» Use of models as pivotal format toward a “usemitlig” representation of requirements: it can be
a dynamic mockup based on model execution/simuati@rder to validate some innovative
functional requirements quite complex to understamdheir textual format. Note that in that
case, to provide full credit for validation in dédation context, there is some extra work to be
done in order to demonstrate good translation betvimitial textual requirements, model pivotal
format and final mockup that is “validated” by sthblders (also called “early validation”).

Whatever the approach, goals remain the same:egsod requirement engineering.

Next chapter recalls good practices and key prigsetthat requirements shall fulfill (textual or rficalized
through models).

Then we suggest a graduation of approaches thettréie various rates at which models are integrat
within the specification activities.

2.1 Requirement engineering goals: Correctness, Consgstcy, Completeness

Requirements Based Engineering (RBE) consist gibéishing and maintaining requirements from users
needs to system or design requirements up to etanyesystem elements.

For each system requirement activities are dompauiallel of architecture activities (see figuredvel.
Traceability is established:
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» During system definition, from System Design Regients ( = requirements identified during
the System Design stage), System Requirementstakdi®lders Requirements
« During integration, verification, validation levdiom requirements to integration, verification

i | StakeholderT | I Stakeholder2 | [ Stakeholder System i
[ ] Needs J'l ] Needs I | Requirements Requirements ]
Eecescsadiillcorcasadil . S — . S—— /

stakeholder
Requirements

Define System
Requirements

Define System
Design
Requirements

, v , ,
! Interface Requirements System Needs Components 1
i between Components for Components Requirements ]

1
\ /

Figure 1: RBE process, adapted fromj[]

Several goals are expected
« Goal 1: Obtain well-formed requirements: SMART (&fie, Measurable, Achievable, Realistic,
Traceable)
» Goal 2: Ensure completeness and consistency ddtspédiers Needs
* Goal 3: Ensure completeness and consistency @ytbim design against the stakeholders
Needs

2.1.1 Goal 1 - Correctness: Obtain well-formed requiremeis (SMART)

Requirements statements should have the followagacteristics (based on ISO/IEC 29148 — Source
INCOSE Guide to writing Requirements, INCOSE SE #taok), detailed in annexes.2Requirement
correctness: Obtain well-formed requirements (SMART

Necessary

Implementation Independent
Unambiguous

Complete

Singular

Feasible

Verifiable

! Bonnes pratiques en Ingénierie des Exigences,atimfeAFIS, Editions CEPADUES, ISBN 978.2.36493920
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e Correct
e Traceable

2.1.2 Goal 2: Ensure completeness and consistency
A set of stakeholders’ requirements should havddthewing characteristics to ensure that the nesus
constraints are complete and consistent. This desu

e Complete:
o Address complete set of Needs and Constraints $takeholders, external systems and
enabling systems.
o Address complete set of missions or business pseses
e Consistent:
o Does not have individual requirements that areraglittory.
o Requirements are not duplicated.
o The same term is used for the same item in allirexpents.

2.1.3 Goal 3: Ensure completeness and consistency of tBgstem design against the stakeholders
expectations
A set of System and Design Requirements should tievéllowing characteristics to ensure that the
set of requirements collectively provides for asfbke solution that meets the stakeholders’
expectations and constraints (based on ISO/IEC&913ource INCOSE Guide to writing
Requirements).
e Complete:
o Address complete set of expectations and Constraint
e Consistent:
o Does not have individual requirements that areraglittory.
o Requirements are not duplicated.
o The same term is used for the same item in allireopents.
o Are aligned and consistent with architecture elemsen
e Feasible (affordable).
o Can be satisfied by a solution that is obtainabéslible within life cycle constraints (e.g.,
cost, schedule, technical, legal, regulatory).
e Bounded.
o Maintains the identified scope for the intendedisoh without increasing beyond what
is needed to satisfy user needs

2.1.4 Attributes of Requirements statements

In addition to the characteristics listed in pres@hapters, individual requirement statements maag a
number of attributes attached to them.

The aim of these attributes is to provide compldamgrinformation to Requirements statements to kenab
the analysis of Requirements.

The table below gives a list of possible attributes

Typical scenarios based on Requirements analysi@an- exhaustive list):
e Requirements Analysis: Identifier, maturity, versioisk, V&V method
e Call for proposal: flexibility and priority of Redrements
e Suppliers responses analysis: degree of compliance
e Justification of design choices
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We find generally the following attributes (detdiliem annexes - Good practices about requirement
attributes):

» Identifier

» Title

e Statement

* Version

* Stakeholder, submitter
*  Maturity

» Concerned Products

e Targeted Release

e Priority, Importance, Weight
* Negotiability, Flexibility
» Cost impact

* Risk

» Verification Method

« Validation Method

e Compliance

e Change Request

» Created by

e Last modified by

e Created on

e Last modified on

Note: from industrial feedback, it is importantitotice that management of attributes is very castly
that most of defined attributes are never filleadvith a lot of mistakes. So there are two simple
suggestions for improvement:
» Assess usage and usefulness of each attributechrpegject in order to be sure that attributes
will bring value.
« And when attributes have been confirmed for the&fulness, it is a good practice to guide
engineers on the phase or activities when theg@posed to fill/update the attribute.

2.2 Requirements defined in natural language and ititestl with diagrams

2.2.1 Description

This approach is the “traditional” approach founaimost all companies. Requirements are written in
natural language and some diagrams are insertbé specification document.

When diagrams or drawings are used, the goal Elyillustrative, and most of the time motivatedthg
need to provide visual support for requirements éin@ hard to explain and understand in their &xtu
format. Those diagrams are used as an introdutgiarcategory of functional requirements, to ghe t
context.
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Concerning edition of those diagrams, it existagewange of tools. Most used are Microsoft Vigil a
PowerPoint because they provide “easy to use” exitith large libraries of icons that can cover gnan
symbols and then represent many concepts.

Those diagrams have limited semantics and it islweys obvious for readers to clearly understaeif t
semantics without explanation. So, generally systesigners provide semantics through a legend that
explains what arrows and boxes mean.

Sometimes those drawings are done with standar@lingdanguages like OMG UML or SysML. In that
case there is generally no need to provide a lefenduse the notation is standardized and thus
considered as known by readers.

So the question becomedn that case (requirements expressed in natamgllage and just illustrated
with diagrams), shall we use MBSE tools with senarir continue using drawing tools with “free
semantics"?

2.2.2 Captured benefits of using diagrams

Benefits:

By using graphical modeling languages, diagramtimotas less ambiguous than with drawings as it
relies on a language that is semi or fully formad aotation is easier to follow if the modeling daiage
is standardized.

But on the other hand those diagrams are not ppéiser (specifying). So there is little or no cogsence
if they remain ambiguous because there will beireqents to provide expected precision.

Drawbacks: with modeling languages, notation ating are more binding than “free” notation of
drawings, what leads to more efforts (learn thglege, complexity of the tool). And the advantafje o
getting a model to support consistency is not dexis that context because those diagrams araseat
to ensure consistency.

Conclusion:

Finally, in that context, using modeling languabas limited returns, as this approach requirestsffo
produce diagrams that cannot give credit for speatibn. Benefits remain limited to high-level
communication.

2.3 Usage of models to mature and verify requirementsefined in natural language

2.3.1 Description

In this approach some requirements are formalizezigh a model and associated diagrams (graphical
views of the model).

In comparison to previous approach, the modelitiyiicis here motivated by requirement maturation
and verification.

Compared to the approach that uses models in dyplescriptive way, using a model and not only
diagrams provides first level of consistency bystaiction (model is a kind of “database” with all
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elements connected) and allows completing congigtdmough usage of model queries (for instance
check that all system ports are connected to pédsbsystems).

Industry recognizes that use of models allows tturearequirements (reach finalized requirements)
faster than with natural language approach andatipsoach is now more and more adopted.

With this approach, it is important that systemigiesrs follow a modeling method adjusted according
the engineering objectives and risks identifiedtmnproject concerning specification quality. Ietl is

no modeling method, designers are left alone intfod the modeling language diagrams, concepts and
tool capabilities, and they do not know which c@isdo use at which stage and when to stop in their
refinement through models. It leads to heteroges@madel hard to review and to maintain.

If model produced does not contain traceabilitidimvith system requirements, any change in system
requirements cannot be traced to the model, andecsaly architecture alternatives or modifications
cannot be easily assessed with regards to apmicagqlirement baseline. Therefore, the contributio
models to impact analysis cannot be fully operatioand relies on manual analysis.

That is why there is a variant from this approadth addition of links between architecture moded an
system requirements. Benefits are more importaittteescomes now possible to get impact analysis on
model when upstream requirements change (by faligwinks).

System
architecture
model

- \
Traceability link \

Figure 2: model is traced to system requirements

3 main usages of this approach are:
» Stakeholder requirements definition
* System requirements definition
« System architecture definition, mainly around Paid@reakdown Structure (PBS) and
verification of consistency between system elenmgetfaces.

Next paragraphs provide some benefits capturentnsitry of using models in those 3 usages.
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2.3.2 Benefits on using models for Stakeholders Requiremis Definition

As mentioned irb.1.1, the objective of the “Stakeholder Requiretm@&efinition” process is to define the
requirements in terms of precise expectations efsusnd other stakeholders concerning the future
system, in the targeted operational environment.

The key steps of this phase are at least the foilgiw

Identify all the stakeholders involved,

Identify the mission and scope of the system,

Define the boundaries of the system and extertatagvolved,

Describe interactions of the system with exterctbis,

Identify and describe the operational use cases,

Identify the user level operating modes,

Formalize the related stakeholders requirementdiakthem to the operational use cases.

At this stage, all the analyses are performed ftbensystem stakeholders external point of view, the
system being considered as a black box. Main fecpst on understanding and trying to answer totmos
of stakeholders’ expectations (avoid missing imgairexpectations).

Globally, main captured benefits of using models lba summarized with the following points:

Graphical and standard notation helps reflectingeetations in a concise and less ambiguous
way: useful for both system team and stakeholders.
Use of different types of diagrams helps separatimgcerns and looking at the problem from
different view points

— Useful as systematic approach: avoid missing ingobntequirements

— Useful as complexity breaker: each diagram dedls avlimited set of concepts
Diagrams help pointing out missing or unclear reguients by highlighting constructs not yet
completed (port, message...)

— Useful to provide local synthesis and local coesisy

— Useful to measure progress in capture

— Useful to support reviews: graphical notes focusmthe point
Model brings a centralized definition for requirett® For instance, if there exist different
documents that define power supply characteristisB)g a model will help building a unique
definition in one place by aggregating all charasties coming from the various documents.
There can be several diagrams representing eaplayity a subset of the properties, but the
model itself contains the whole definition.
Modeling approach brings guidance in the sequehemgineering activities and in the level of
details through use of different diagrams at défgrabstraction levels

— Useful to know where to start and when to stop

At a more practical viewpoint, here are some follmumodeling techniques that have proved to beulisef
in industry in order to understand stakeholder etgi®ns:

Context diagrams: With block descriptions, thosagthms represent the direct environment of
the system and give initial information about tlystem boundaries and the interactions between
the system and external systems and users. kyathetic view of environment/context that can
be used as support for discussion with stakehalders
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» Context use cases and scenarios: Use cases repitesenain services expected by the system
users (people or other systems). They are detailgd scenarios that precisely describe
sequences of interactions between system and visoement and show when the main events
and actions occur. Those sequences can be easilysded with end users because they translate
operational scenarios in a simple representatitim a&vsmall set of concepts easy to teach: lifeline
(for each system and actor) and messages exchaegsden lifelines during time for the given
scenario.

» User level state machine: A state machine can bigedefrom scenarios by aggregating steps
(messages flowing in and out of system) istatesand transitions. It is an interesting way to
factorize the expected behavior of the system éntmique representation. This diagram is less
easy to explain to end-users because it aggregetesal scenarios and is thus the result of some
“consolidation” that was not mentioned by end us8uw it is very useful for system team to
prepare verifications about global consistency.

» Data (dictionary) model: Modeling is indirectly aaywto capture a precise glossary of all useful
concepts and associated relationships for a giysterm of interest. With blocks or classes,
properties and relationships like “association”prfgposition” and “inheritance”, a modeling
domain provides immediate access to a vocabulaayfarmal way and reduces ambiguities and
interpretations. It can replace a very large nundfeequirements in a very synthetic approach,
what is useful to limit documentation size and regafforts.

e Traceability relationships: The modeling workbergdnerally provides built-in mechanisms to
define traceability relationships between modeliagifacts and also external pieces of
information, either by explicit links or by paremdi or annotations. These traceability links are
determinant for consistency and completeness dgalysrpose. As mentioned previously,
without traceability links, model remains a “oneoBhmeans to mature requirements and
becomes obsolete when requirements change. Sacalbiligeis a fundamental engineering
activity if there is intent to maintain model aftest baseline.

2.3.3 Benefits of using models for system requirements €rition

At system level, focus is mainly put on consolidatefinition and consistency: there is a switchrfro
capture of a set of usages (operational scendaddbg building of a centralized system definition.

Globally, a modeling approach is useful to bu#ddconcise and consistent system definition
construction (model constructs) and by method (@gmfion of usages + links/allocations between model
elements).

From this definition it is possible to derive systeequirements and efforts to derive those requérgm
are generally reduced compared to the writing ajuimements by derivation from stakeholder
requirements.

At a practical view point, modeling technics prdsenin the previous chapter about stakeholder needs
and requirements definition are still useful and ba reused to describe what the system shall @go as
black box with more details. As an example (notagidtive) there can be:
» External interface diagrams: they can be used avitiyical or physical view:
o0 With a logical view, those diagrams give detailsimtieraction flows between tractors
(roles of external systems or humans in interactidgth system of intereséind the




Requirements and architecture within modelling egnt page 18

system (always seen as a black box). State madigeams can complete them if the
interaction follows some protocol. It is also pbssito precise data types through blocks
or classes in order to improve precision and ctersty between all definitions; and then
possible to get a detailed description of eachesysixternal interface

0 With a physical view, those diagrams show connggtithe way connected systems
exchange data or energy with the system of intahgstgh its physical ports (sensor,
network, actuator, power plug, discrete, buttonHgre again, blocks can be used for
instance to describe ports more precisely thargustme and a comment.

» System scenarios: scenarios identified in definitd stakeholder requirements can be refined to
identify main services or functions the system Ispalform. Those scenarios that are mainly
focused on system behavior can be representedotwydiagrams like EFFBD or activity with
data, energy or any item flowing and control flokgre the main focus is put on consistency and
an activity or EFFBD can show a lot of differenesarios on same diagram (thanks to control
flow concepts with decision, fork, wait conditions event...). Those diagrams are less easy to
understand by end users but they ease verificaticzonsistency and reviews by system team
because they are more synthetic than a lot of segudiagrams.

» System level state machine: A state machine carddyéeved from use case analyses by
aggregating all the stepstéte3 and main transitions identified in the system nscims.
Comparatively to those established at operatioeedll this state machine is refined from a
designer point of view, capturing additional statesd defining precisely how system level
functions are triggered. The system state machanebecome the central element of the system
model, allowing the simulation of its behavior f@lidation purpose. Alternatively behavior can
also be represented by flow diagrams like EFFBBRabivity.

2.3.4 Benefits of using models to support breakdown actity

A first aspect of the system architecture defimittmncerns the definition and management of itsspar
(System elements) and associated interfaces. Madelargely used to support this breakdown agtivit
The system breakdown is often modeled in hieraathiees with at least the associated Product
Breakdown Structure (PBS) that uses block, blodperties and block decomposition as main concepts.

During design, development and testing phase®RB&is often linked to design teams’ organizatiod a
very often associated to more functional concerhsre is generally an activity of functional breakah

to decompose functional requirements down to thel lhere sub functions can be clearly understood
and allocated to the PBS.

Here again, blocks and block decomposition are asedain concepts, completed with block ports and
connectors between ports to show functional floatgdr energy). Allocation is often done through
tables that can be formalized in tools like Micribgtxcel or directly inside model when modeling
language contains “table” concept or “allocatioelationships (SysML provides both).

Models can also be used to allocate required sygterformance over several requirements and/or
architectural elements.

Using model makes it easier to get the global pécaund to drive optimizations of functional interég or
verification of consistent allocation of functioos PBS.

PBS can also be linked to the Work Breakdown StinecfWBS) and the associated workflow to follow
development progress.
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2.3.5 Benefits of using models to verify that parts cané connected consistently

Globally, at any stage of the development life eydystem’s parts definition must remain consistent
ensure that those parts can be integrated whereimguited. This supposes that all system’s parts
interfaces are well defined, that they can be ablai(compliance of data/energy/else provided and
consumed) and that interaction protocols are gletapicted and managed.

Modeling of interfaces (structure and behaviorhgsi a lot of support to verify those properties.

Firstly, the availability of modeling syntax andnsantics helps system designer in building consisten
models by construction: a block diagram will alloennecting blocks through connectors and eventually
ports (interaction points), which is a recognizettiface pattern. Tool will forbid connecting twintks
without ports or will allow creating rules to chettiose cases. Without model, there is no support fo
such verification (Visio or PowerPoint will nevelam system designer that a box is connected djrectl
another box without intermediate smaller boxes).

Secondly, because of quite clear semantics (foromakemi-formal modeling language), modeling
strongly reduces ambiguities. If there is differpossible ways to formalize one interface it metuas
interface requirements are not completely defined #here shall be another iteration concerning
definition. So modeling forces system designersimgiissues about ambiguities or missing detaits an
misunderstanding or insufficiently detailed defmit can be detected early. Associated with a clear
interfaces’ definition process, modeling approaeh wery efficiently support consistency verificatio
and, for example, allow automatic checking of eétsre-defined rules.

Last, modeling helps in reuse. Generally, intedaar® described in tabular forms, based on clear
templates that details sets of properties to bimeigfat each step of the design process: fundtiata
(ranges, units, meaning, description, ...) in fitages, and at the end all information linked to the
platform and networks formatting (label formattioig buses, communication protocol used, discrete
types or wiring data). Such description of systaterfaces can be capitalized and reused for other
purposes (for example, it can strongly ease manageand integration of behavioral models in complex
simulation platforms) or other programs.

2.3.6 Benefits of using models in other related processes

In addition to the support of previous engineeartjvities, model can also help in:
» Re-use & change management: thanks to tracealfitipact identification and modification
cascading in design definition is easier to perfaith models than with documents because
links are more direct.

» Continuity from functional analysis to product atehture.
o Improves traceability between customer expectatmussystem design.

o V&YV activities: identification of functions to bested toward components under test.

» Safety analysis:
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2.3.7 Change in efforts and challenges

Compared to the “traditional” use of documents, afs@odels requires a different distribution ofcets.
Use of models requires more efforts at the veryrirégg (learn the modeling language, learn assediat
tooling, ask more questions to define the right etpdnd less after because there is less iteraiosach
requirement maturity. Savings are expected inrgdsiction of iterations and faster maturation im first
cycles.

Note that approach requires maintaining links betwe=quirements and the system architecture mondel i
addition of “traditional” links between system régments and system elements requirements. Those
efforts are necessary to maintain model when reménts change.

It is important to notice a challenge concernimgability of model with system requirements: they
generally stored in a database. This challengarigafly covered today, as most commercial modeling
tools provide gateway with most famous requirentiettébase solutions. But there is still a
methodological challenge: should new requiremedgstified in models put back in the requirement
database?

2.4 Usage of models to formalize architecture definitio and system specification

2.4.1 Description

With this approach, the goal is to support systechitecture definition from system requirements dow
to system element requirements with full tracegbdone through models.

In terms of system engineering activities, it metiag system requirements are formalized and
decomposed/refined through a model and associ@égdadhs. Model contains system elements, their
interfaces and associated requirements tracedsterayrequirements.

As the goal is to cover all requirements, modebisipleted with textual requirements when modeling
language or its extension does not allow easy flizateon of some system requirements or some system
element requirements. Those textual complementsaged to their source.

\ﬁ
- ooo oo /

I
I
,l
Traceability link \ LY

---------- >
Requirement translation

Figure 3: models are completed (extended, annotatpdith textual requirements (R)
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2.4.2 Industrial feedback

With this approach specification can be generatath inodel because model contains specification tree
and traceability between system requirements astgsyelement requirements, with their attributeat(t
will be used for generation).

But there is first the need to know precisely weatt of the model is specification (not all model
elements are requirements) and this is quite almadjenge. In fact, when formalizing requiremetigre

is generally introduction of “context” and “glueleenents around requirements and system desigreers ar
not aware of that. So sometimes formalizationnesah translation, but most of time this is a refiremt

with addition of extra information. This is a vedifficult point to address that can be considered a
“blocking” point for some projects.

Another point concerns the reverse transformatiomfmodeling language to natural language. Indeed
there are several situations when we want to peoaidpecification expressed in natural languagéehier
teams (quality, sub-contractors...). In those case®tis the need to translate formalized requirésnen
into natural language.

Note: it is always possible to use “comments” as¢dmentation” associated to the different model
elements in order to add textual requirements hed tetrieve those requirements through a script or
guery applied to the model. But it would mean drating in text some information already availaldeaa
model element: tedious and error prone...

2.4.2.1 Benefits
Benefits are really high:
e Fast maturation of requirements,
e Impact analysis on requirement change eased thanlse of models and navigation between
diagrams (instead of navigating in large documents)
e Specification document can be generated (now thdata are in the model)

2.4.2.2 Challenges
But there are many challenges:

1. Ability to identify non textual requirements anddeability links in models
2. Translate requirements and their traceability liakailable in models to textual representation.

Next paragraph focuses on those challenges.

2.4.3 Challenges and questions about use of models foregjification
This chapter explains what formalizing requiremehteugh models means in practice.

Focus is put on special case when the goal isrtodiize, refine, decompose, allocate and derivieays
requirements into system element requirements g¢firouodels.
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It means that modeling language and modeling tioall sllow supporting many activities concerning
requirement engineering and management.

Whatever format of requirement (text, table, graphi.) and its formalization (natural language,
modeling language...) requirement shall be engatbir a way that can be certified. Next paragraph
recalls what requirement engineering good pracstédave to be applied for formal requirements.
Then chapter lists challenges and questions tis when using models in the goal of building refee
for specification.

Starting from system-level requirements, is it flleso ensure that our architecture definition eloaill
provide a set of complete and consistent requirésngith no overlapping? it possible to ensure that
those developed requirements will be at the righel?

Rg 1 Rq1 RaZ
'Rq q
' Rq 2
9 Rq 3
Rq 4
Rq5
Rg 4 Rq 6
Rg 5

Figure 4: from overlap of requirements to a consignt set of requirements

2.4.3.1 Building complete and consistent logical architecture

When defining system level architecture, SeBoKréebmmends starting with logical architecture
expressed with 3 viewpoints (a lot of other viewysiexist that will complete that first definition)
functional architecture viewpoint, behavioral atebiure viewpoint and temporal architecture viewpoi

There exist a lot of modeling technics to suppo# or part of those viewpoints: Functional
decomposition, FFBD, EFFBD, Integrated Definitiom Functional Modeling (IDEF), N2 charts,
operational scenarios... But challenge is here tarerthat all used techniques can be applied on same
model (else we will have to deal with model tramsfations...) and can be combined consistently
(without overlap).

Formalization of functions and scenarios of funtsio
SeBok suggests starting by analyzing functionatratponal and interface requirements in order to
deduce system level functions and their externiatfiaces in terms of data/energy/... inputs and dstpu

Some modeling languages provide functional blosksative concept but others do not. What concept
shall be used with SysML?
Globally we find three main options in industry:

* Blocks
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» Activities

e Operations
Blocks seem natural candidates because they suppattand output ports and can be decomposed. But
what about control flow between functions? How:tpress function activation? How to define a scenari
of functions as recommended by SeBok 1.4? For tbaseerns, “Activity” concept is better suited.
Operations fit well with the notion of function & have input and output parameters) and theinkeha
can be specified through the “behavior” attribitattcan reference an activity element and assakciate
activity diagram. But the decomposition of functde harder to achieve with operations than wititks
and activities because an operation does not eoofarations. So mapping is a little bit less radttiran
with activities.

Traceability links of functions with system requirents:

In order to reach completeness there is a needstore that all functional requirements have been
analyzed and taken into account in logical architec Traceability links are used for that purpose.
OMG SysML provides different semantics for tracéigbielationships in addition to « trace » (thaish
poor semantics) and suggests using specializetibredips like « Refine », « satisfy » or « verfyor
test.

When functions are just a representation of fumetioequirements, what kind of traceability semamnti
shall we use for that purpose? Shall we use «Refj “Satisfy”, else?

“Satisfy” seems to be adapted for solutions arnthét case functions represent the problem space. So
“Refine” seems a better approach for this situation

But functions can also represent design decisicmsi¢es between alternate solutions): in that case,
« satisfy » seems to be the good semantics, andetommended to provide rationale for that.

Linking functional and behavioral elements with peral architecture

Good SE practices (including SE Handbook) recomnukiishing mission phases, system operational
states and modes in order to precise conditionfufation execution. And here again decomposition
shall be possible in order to represent those tiongdiwith different abstraction levels. Stateswistate
machine, state flow, Petri net...) are different téghes that can support those concepts.

Challenge is here to links functions with phasesdes and states.

If different modeling languages are used with défeé semantics, it will become hard to define limkth

clear semantics between functions and modes/states.

Now let us take the assumption that there is sapdelimg language that can cover both functions and
states concepts. What would be the link?
Here there are mainly three ways of creating this |
» Reference functions in states through “doActivitynEntry”, “onExit” or any “onEvent”. This
applies for functions represented by activities.
» Use allocation relationships between functions states. This applies for any representation of
functions (activities, operations or blocks).
» Addition of assertions (pre conditions, post caodg) in function behavior to mention
modes/states.

2.4.3.2 Trade-offs concerning system architectures
Is it possible to formalize different architecturesame model in order to get visual support for
comparison? In that case, how to interpret tradigabinks? Should the links be put on all solutsoor




Requirements and architecture within modelling egnt page 24

should they be put only on preferred architect@e8uld there be only one architecture for a given
model?

Different alternatives exist in industry:

» Define alternate solutions through different mogrlsin version control and configuration.
Comparison can then be performed between modgjsifes modeling tool comparison
capability) or through assessment of each modetamparison of those assessments

* Some provide alternate solutions in same modelardnheritance to show how those solutions
relate to each other. Inheritance can be usedaw slifferent solutions expressed through blocks
or to show different functions expressed as a@witCan even use inheritance for use cases to
capture abstract system functionalities.

* In case there are many solutions to consider, it@mee is not enough and it is better to consider
variability outside of system model. Variability oels defined orthogonally to the system
specification can be used to support that challefigere is a dedicated white paper on MBSE
applied to product line engineering.

2.4.3.3 Creation of new requirements in the model

Function decomposition brings new requirementsaatar to sub functions. How to express those
requirements? Is it needed to extract them fromehadd put them in the requirement database? Can
they remain in the model with ability to identityegm as requirements?

» Some industrial experts argue that all requiremsin&dl be managed in the “requirements
database”. In that case this means that all neuinegents are exported and put back in the
requirement database. Requirement hierarchy anctibarhierarchy are strongly related. This is
the “zig zag pattern” presented by Tim Weilkinsysmod approachuttp:/model-based-
systems-engineering.com/2012/03/26/the-sysmod-gigadtern/

» Another option is to consider that decompositiomegfuirements that follows functional
decomposition can be kept as part of the modely @muirements derived at lower level will be
exported to the requirement database. It is sinvaté fewer requirements to manage in the
requirement database but it provides less contrdlinction decomposition.

Addition of metadata on requirements in models

If requirements are kept in model, do the modelimguage and the modeling tool provide capabilities
add all requirement attributes coming from RBE gpuattices and presented in previous paragraphs? Is
it possible to apply cascading of attribute valalesig requirement hierarchies to ensure some efiigi?

to consider that hierarchies provide implicit “nefiece” on parent requirement attributes?

Is it possible to identify requirements formalizadnodel? to tag them or to find rules to deteenti?

Is it possible to extract identified requirememsriodels? What is the minimum of needed to extract
around model element to get its definition? isosgible to automatically translate in textual forma
requirement expressed as model element?

Is it possible to extract a diagram to represagairement instead of model elements? How to ensur
verification and validation of a diagram? Does #k® sense to define tests for a diagram? Whatitloes
mean if a diagram is a container of graphical el@mbnked to semantic elements?
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Appendix5.7 provides some answers concerning identificatfoiequirements in models through results
of advanced research.
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3 COMMON AGREEMENTS ON MODELING AND MODELS

3.1 Efficient modeling requires goal and strategy

The document showed that modeling can be usedferatit gradual approaches and that benefits are
different according to the way modeling is usedr iRstance, in chapter 3.2 there was a case when
models are used as an illustration of some texaplirements. In that situation, requirement ergying
activity was not modified and modeling is just ussda complement added to the reading of textual
requirements. It is important to get in mind thahéfit will be low in that situation and that itrist worth
investing a lot in elaborated modeling languagekstaanls. More, it forces to maintain consistency
between requirements and models which can be seextra work (especially when the same statements
are expressed simultaneously through textual gegmms and diagrams)

If a company uses model without clear objectivesuathe engineering activities it will support, teés
great chance that modeling activities end withtfaten: frustration on returns that will remaimwaf
modeling activities did not replace or reduce semgineering activities; frustration also on modgluse
with low recognition from management or rest of ttha@m if there was a lot of efforts done with mautg!
and no clear benefits to align on this investment.

When the goal is clearly defined, aligned on redgdafforts on some engineering activities, this is
important to define a strategy to reach this geedctically it means defining a modeling method tha
addresses the following elements:

*  Which concepts to use and when (which stage)

*  Which diagrams to produce and with which abstradigwvel

* Modeling refinement stop criteria

* Modeling structure to organize model, ease reviesv@llaborative editing

Try to see in your organization which engineerintivities can be improved and if modeling mightghel
then try to identify some savings and setup a niegehethod in order to reach that target savings.

3.2  Which modeling strategy? Short-term or long-term?

There is a big question that should be addressgdeeely in the project when a company intendss® u
models: “do we intend to use models as a meamspmive the first baseline only (use model in or@ sh
and then throw it away)? Or do we want to use madel key artifact of engineering on the wholedife
product development and maintenance?

If we want to use model for long term we will haweemaintain it and as for any reference-engineering
artifact, it is important to put model in configtica (baseline) and to ensure traceability withttgzm
requirements.

Why is traceability so important for models? We sawhapter2.3.1 that if the model produced is not
traced with upstream requirements (stakeholderirements for operational model, system requirements
for system architecture model), this model willuseful only for current baseline of requiremewts

soon as there are new or changed requiremenes;dites very hard to detect changes on the modkl, an
at some point in time model becomes obsolete amadotde used to support maturation of requirements
or verification of architecture.
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So, it is important to get this consequence in migwy early in the project: If we choose long term
modeling, it is highly recommended to trace modighwpstream requirements so that impacts can be
analyzed quite easily after some change in upstregmirements.

3.3 Using model to formalize a large part of specificabn is a big investment

We saw in chapte2.4 that this strategy is not easy because it regjtinat model becomes fully
consistent, complete and at right level of detaild can be traced upward to system requirements and
stakeholder requirements, backward to system eleragnirements.

This is not so complex when dealing only with a f@guirements like interface requirements, but it
becomes a hard task when we want to be able togagermaost of the system specification from modeling
elements. There are a lot of challenges to ad@ms$shere is no “magical” modeling language and
method that can be used as-is for any project. Strakenges are still in “research” status (idgntif
requirements from model, ensure traceability throompdel elements) with limited methodology and
tooling support.

Targeting formalization of whole system specifioativith model is a strategy that requires a large
investment on knowledge in the modeling languagkisncustomization/specialization in order to aove
all needed concepts in the engineering domain deresil in project. Special attention shall alsoilkerg
to verification activities and rules because mdmlomes the reference.

But those efforts should be balanced with the getarns that are generally got through accelerated
maturation of system definition and desigand all the analysis efforts and time saved durin
maintenance of the system thanks to the easy rnangarough models.

3.4 One master repository for specification at each r@fement level

We recommend identifying one and only one mastosiory for specification at each level of
refinement. It can be for instance “PowerPoint”ulbents at marketing level and then “DOORS”
database at system level and finally “UML models$attware level.

This possible use of different master repositosieg®ss levels helps adapting tooling with regandbé
skills and culture of people in charge of defingmgcifications at this level. Configuration managam
will ensure consistency across refinement levaks:baseline will provide links between data from th
different repositories used as reference for eafthement level.

Note: using different repositories for differentdés allows adapting to different teams (skillsfune)
with more flexibility, what is very important for BISE deployment, but might generate complexity in
tooling in order to create the right links betwekspatched data for the baseline.

But concerning one refinement level there shak lb@ique master repository for specification.
Experience shows that if there are two repositatesame level without priority in reference, thisra
high risk of confusion for systems engineers argbate point in time there will be different

% Model benefits are not all mentioned there butdetailed in « learning MBSE » published by INCOSE
through AFIS (french chapter).
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modifications done concurrently in both repositsyi@ot cause of errors, or one repository will Imet
maintained.

This is particularly true for model and documefhtddcument remains the reference for specificaffon
instance at system level), when project has towvelel new release of specification and deadlibd@it

to be reached, team will focus on document becihiséhe contractual deliverable. Consequenchas t
model will become obsolete within months becaud®dy will accept to do same moadifications on two
repositories: document and model.

So if there were a lot of efforts to build a mottelt contains most specification information, and
especially if goal is to use model to support fdinadion of specification, it is very important tiecide
that the model becomes the reference and use tuendmt as an output (generated) from the model.

3.5 Align SE practices before deploying MBSE

As already expressed &1 Efficient modeling requires goal and stratetipere is no unique strategy to
adopt Model Based Systems Engineering but oneeofdtuisites is to know systems engineering good
practices and align on definitions and concepis:iththe foundation layer for a system team before
building and sharing models.

Indeed, when trying to use models we sometimesdisahat we do not understand same concepts
behind same model elements. Everybody will do tapping with his/her culture and vocabulary and
they might slightly differ between colleagues. Fmtance, take a survey about what a “use casefisnea
for systems engineers: some will explain that fitaees the mission purpose while others will trateslt
into “system function” or “operational scenario”.

It is not possible to use modeling language propant take advantage of its unified notation iftegss
engineering concepts are not shared amongst teanbens.

What about training? That is one good solutionligmasystems engineers on same definition for model
elements, and same mapping to systems engineeatimgdard” vocabulary. Quite often the training
sessions start with assumptions on knowledge aystéms engineering and they reveal to be false for
several attendees. It is better to align peoplsystems engineering vocabulary and processes before
starting using models. Or training might take gitaation into account and teach both systems
engineering and use of models to support it. Ib¢hae, 5 days are a minimum and would rather be
called “introduction to “MBSE” ...



Requirements and architecture within modelling egnt page 29

4 CONCLUSION

Current difficulties

Requirement Based Engineering through documentsslaabed limits on complex and critical systems
that are developed today: writing, reviewing andntaaning documents of 500 to 1000 pages is ho more
a (satisfying) option because it is hard to fines, ambiguities and inconsistencies.

It is now necessary to have more formal and strattuay to organize the requirements and to lirdath
with the design concepts.

MBSE brings solution
The models provides a way to insure consistenoydsat the different objects (requirements,

architecture, ...) and MBSE provides a way to vettify quality and consistency of the models (using
static controls and using simulation).

MBSE helps analyzing and validating concepts earthe development cycle and during maintenance
and MBSE helps detecting issues with requirem&usVIBSE can be considered as a good means to
accelerate maturity of requirements

Road Blocks to apply

There is no unique strategy to adopt Model Basexte®ys Engineering: you can decide between short
and long term, but have to know the consequentkmd term strategy is chosen, models will become
reference engineering artifacts and shall be mahemgeonfiguration and traced to requirements.

One of the requisites is to know systems engingagood practices and align on definitions and
concepts: this is the foundation layer for a systeam before building and sharing models.

Efficient use of models has impacts on configuratitanagement, on organization, and there is dtill a
to do in that area, especially in tooling suppod aonnections between teams and disciplines.

INCOSE vision

Finally, have a look 08020-2025 visiohcompiled from INCOSE and you will have confirmatithat
MBSE is not seen as a small trend but rather aseaknowledge to enable the development of future
systems that will continue growing in complexity.

? http://www.incose.org/AboutSE/sevision
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5 APPENDIX

5.1 1S0O 15288:2015 technical processes considered irethaper

5.1.1 Stakeholder Needs and Requirements definition

The purpose of the Stakeholder Needs and Requirements Definition process is to define the stakeholder
requirements for a system that can provide the capabilities needed by users and other stakeholders in a
defined environment.

It identifies stakeholders, or stakeholder classes, involved with the system throughout its life cycle, and their
needs. It analyzes and transforms these needs into a common set of stakeholder requirements that express
the intended interaction the system will have with its operational environment and that are the reference
against which each resulting operational capability is validated. The stakeholder requirements are defined
considering the context of the system-of-interest with the interoperating systems and enabling systems.

Note: Requirement definition is generally perforntiecbugh some formalization according to
requirement writing best practices, compiled aratath at INCOSE website:
http://www.incose.org/ProductsPublications/techmatiions/GuideRequirements

When there are conflicts or feasibility issues, ifications are negotiated.

Note: many stakeholders’ requirements (in partictédgarding the licensing, operation and mainteaanc
of the system) will be refined once downstreamgteshoices are done or after external events occur
(such as incidents or accidents that occurredmilasi systems, or regulatory changes) and cannot be
fully elicited upfront. The third purpose of theopess is to ensure that the stakeholders are iefban
necessary all along the development process, vaoighl lead to new baselines (new or modified
stakeholder requirements).

5.1.2 System Requirements definition

The purpose of the System Requirements Definition process is to transform the stakeholder, user-oriented
view of desired capabilities into a technical view of a solution that meets the operational needs of the user.

This process creates a set of measurable system requirements that specify, from the supplier's perspective,
what characteristics, attributes, and functional and performance requirements the system is to possess, in
order to satisfy stakeholder requirements. As far as constraints permit, the requirements should not imply any
specific implementation.




Requirements and architecture within modelling ernt page 31

5.1.3 Architecture definition

The purpose of the Architecture Definition process is to generate system architecture alternatives, to select
one or more alternative(s) that frame stakeholder concerns and meet system requirements, and to express
this in a set of consistent views.

Iteration of the Architecture Definition process with the Business or Mission Analysis process, System
Requirements Definition process, Design Definition process, and Stakeholder Needs and Requirements
Definition process is often employed so that there is a negotiated understanding of the problem to be solved
and a satisfactory solution is identified. The results of the Architecture Definition process are widely used
across the life cycle processes. Architecture definition may be applied at many levels of abstraction,
highlighting the relevant detail that is necessary for the decisions at that level.

Note: for details about architecture descriptiosmagke consider reading ISO/IEC/IEEE 42010:2011 -
Systems and software engineering standard - Arcthite description

5.1.4 Design definition

The purpose of the Design Definition process is to provide sufficient detailed data and information about the
system and its elements to enable the implementation consistent with architectural entities as defined in
models and views of the system architecture.

5.1.5 System analysis

The purpose of the System Analysis process is to provide a rigorous basis of data and information for
technical understanding to aid decision-making across the life cycle.

The System Analysis process applies to the development of inputs needed for any technical assessment. It
can provide confidence in the utility and integrity of system requirements, architecture, and design. System
analysis covers a wide range of differing analytic functions, levels of complexity, and levels of rigor. It includes
mathematical analysis, modeling, simulation, experimentation, and other techniques to analyze technical
performance, system behavior, feasibility, affordability, critical quality characteristics, technical risks, life cycle
costs, and to perform sensitivity analysis of the potential range of values for parameters across all life cycle
stages. It is used for a wide range of analytical needs conceming operational concepts, determination of
requirement values, resolution of requirements conflicts, assessment of alternative architectures or system
elements, and evaluation of engineering strategies (integration, verification, validation, and maintenance).
Formality and rigor of the analysis will depend on the criticality of the information need or work product
supported, the amount of information/data available, the size of the project, and the schedule for the resuits.

5.2 Requirement correctness: Obtain well-formed requirenents (SMART)

o Necessary.
o Defines an essential capability, characteristiost@int, and/or quality factor.
o If removed or deleted, a deficiency will exist, whicannot be fulfilled by other
capabilities of the product or process.
Is currently applicable and has not been made etesbly the passage of time.
Requirements with planned expiration dates or appllity dates are clearly identified
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Implementation Independent
o Address what is necessary and sufficient in theeays
o Avoids placing unnecessary constraints on the sactoiral design.
o States what is required, not how the requirememtilshbe met.
Unambiguous.
o Stated in such a way so that it can be interprietedly one way.
o Stated simply and is easy to understand
Complete.
o Needs no further amplification: it is measurabld anfficiently describes the capability
and characteristics to meet the stakeholder's need.
o Contains no To Be Defined (TBD), To Be Specifie@§]), or To Be Resolved (TBR)
clauses.
o Resolution of the TBx designations may be iteratind there is an acceptable timeframe
for TBx items, determined by risks and dependencies
Singular.
o Includes only one requirement with no use of cocijioms.
Feasible.
o Is technically achievable, does not require maohhology advances, and fits within
system constraints (e.g., cost, schedule, techméggll, regulatory) with acceptable risk.
Verifiable.
o Has the means to prove that the system satistespbcified requirement.
o Evidence may be collected that proves that theesysian satisfy the specified
requirement. Verifiability is enhanced when theuiegment is measurable.
Correct.
o Has to be met or possessed by a system to sota&ehslder problem or to achieve a
stakeholder objective.
Is qualified by measurable conditions and boundeddnstraints.
Defines the performance of the system when useddpecific stakeholder or the
corresponding capability of the system, but ncdgability of the user, operator, or other
stakeholder.
Traceable
o Is upwards traceable to specific documented stdéiehstatement(s) of need, higher tier
requirement, or other source (e.g., a trade ogdesiudy).
o Is downwards traceable to the specific requiremientise lower tier requirements
specification or other system definition artifacts.
o All parent-child relationships for the requiremang identified in tracing such that the
requirement traces to its source and implementation
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5.3 Good practices about requirement attributes

Weight

: Typical Description
Attribute yp . P
Scenarios
. Identify a | Allows to uniquely identifying each requirement, ander to
Identifier . . L
requirement | reference it in documents or other tools, or facéability.
Titl Identify a | Short text that summarizes the detailed descripténthe
e requirement | requirement.
- N Specify a | Statement of the requirement, short and precisthowi any
atemen requirement | justification nor additional details. Could be @i
graphical...
. Lifecycle Current version of the requirem
Version
Traceability | Originator of the requirement, responsible for thguirement
Stakeholder, ‘ g d P
Submitter
Maturit Lifecycle Current state of the requirement in its lifec
aturtty (Ex: Draft, Verified, Accepted, Rejected, etc.)
Define the | Allows defining which elements of a product linee
Concerned .
Product scope concerned by a requirement.
roducts Do not confuse with allocation of system requiretaei the
components of this system.
Can also be made through traceability links to scdption of
product families.
Define the | In case of incremental delivery, this attributeoa defining
Targeted C ) . . .
Rel scope which increment will take this requirement into agnot.
clease Can also be made through traceability links.
Priority, Qualify Assessment of the requirement business value d&elsblder:
Importance, | requirements| (ex: final users, maintenance team, etc.)

But also Key Design Drivers
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N Qualify Assessment of the possibilitito negotiate the requireme
Negotiability, . i . .
o requirements| (ex: regulatory control and security are not neajué)
Flexibility
Cost | " Qualify Assessment of the impact of the requirement on fiha!
ostimpac requirements| product cost or development cost (ex: High, Mediuow).
Note: Usually made for a set of requirements
Risk Risk According to the performed risk analysis (secul
IS Management| performance, processes, etc.), attributes likek'Ris Safety’,
'Risk for process'... may be filled.
Risk analysis is usually a separate process.
The risks attributes can also be managed throungh.li
V&V Method Perform V&V | Allows identifying Verification and Validation metlds (ex:
Inspection / Analysis / Demonstration / Test) wieésborating
the requirement.
Allows to agree with stakeholders on V&V methods
Can be separated in Verification, Validation
c i Traceability | Allows evaluating an answer to a call for tenderification of
ompliance the answer’'s compliance to the requirements ofetihéter of
the call
Traceability | Reference of thchange request at the origin of the requirer
Change . e
creation or modification.
Request , : .
Note: should be implemented as a link to a changeagemen
system.
Created b Lifecycle Creator of the requireme
reated by Do not confuse with the stakeholder
L ast Modified Lifecycle Author of the latest requirement modificat
as b; e Do not confuse with the stakeholder
Lifecycle Date of the requirement creat
Created on v q
Lifecycle Date of the latest requirement modifica

Last Modified
on
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5.4 Example of traceability process data model

Data Model
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ool _ .
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i £zl | m
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\
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/
\ /

Sub System and other
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matrices

Requirements Specification

satisfies Traceability
/ matrices

Sub-System
requirements

\ 4

5.5 Suggestion of classification for requirement types

- Validation &
= Verification
details,

y
IVV result

ISO/IEC/IEEE 29148:2011 "Requirement Engineering" section 9.4.2.3 (1SO 2011) suggests one possible
classification with the following table that lists categories and associated semantics.
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Types of System Requirement

Description

Functional Requirements

Describe qualitatively the system functions or tasks to be performed in operation.

Performance Requirements

Define quantitatively the extent, or how well, and under what conditions a function or task is to be performed (e.g.
rates, velocities). These are quantitative requirements of system performance and are verifiable individually. Note
[that there may be more than one performance requirement associated with a single function, functional
requirement, or task.

Usability Requirements

Define the quality of system use (e.g. measurable effectiveness, efficiency, and satisfaction criteria).

Interface Requirements

Define how the system is required to interact or to exchange material, energy, or information with external systems
(external interface), or how system elements within the system, including human elements, interact with each
iother (internal interface). Interface requirements include physical connections (physical interfaces) with external
|systems or internal system el ts supporting interactions or exchanges.

Operational Requirements

Define the operational conditions or properties that are required for the system to operate or exist. This type of
requirement includes: human factors, ergonomics, availability, maintainability, reliability, and security.

Modes and/or States Requirements
Adaptability Requirements

Define the various operational modes of the system in use and events conducting o transitions of modes.
Define potential extension, growth, or scalability during the life of the system.

Physical Constraints

Define constraints on weight, volume, and dimension applicable to the system elements that compose the system.

Design Constraints

Define the limits on the options that are available to a designer of a solution by imposing immovable boundaries
nd limits (e.g., the system shall incorporate a legacy or provided system element, or certain data shall be
maintained in an online repository).

Environmental Conditions

Define the environmental conditions to be encountered by the system in its different operational modes. This
hould address the natural environment (e.g. wind, rain, temperature, fauna, salt, dust, radiation, etc.), induced
nd/or self-induced environmental effects (e.g. motion, shock, noise, electromagnetism, thermal, etc.), and threats
0 societal environment (e.g. legal, political, economic, social, busi etc.).

Logistical Requirements

Define the logistical conditions needed by the continuous utilization of the system. These requirements include
ustainment (provision of facilities, level support, support personnel, spare parts, training, technical
mentation, etc.), packaging, handling, shipping, transportation.

Policies and Regulations Define relevant and applicable organizational policies or regulatory requirements that could affect the operation or
rformance of the system (e.g. labor policies, reports to regulatory agony, health or safety criteria, etc.).
Cost and Schedule Constraints Define, for example, the cost of a single exemplar of the system, the expected delivery date of the first exemplar,

letc.

5.6 Examples of system elements and physical interfaces

Extract from INCOSE SE Handbook V4.0:

TABLE 4.1 Examples of system elements and physical interfaces

Element Product system Service system Enterprise system
System Hardware parts (mechanics, Processes, databases, Corporate, direction, division,
element electronics, electrical, procedures, etc. department, project, technical
plastic, chemical, etc.) team, leader, etc.
Operator roles Operator roles IT components
Software pieces Software applications
Physical Hardware parts, protocols, Protocols, Protocols, procedures,
interface procedures, etc. documents, etc. documents, etc.

5.7 Two examples of advanced research to identify requement in models

5.7.1 PBR theory (written by its author: P. Micouin)

Between 2006 and 2008, Patrice Micouin has develap@BR theofy which is now fully integrated in a
complete Model Based Systems Engineering methdddc&MM (PMM stands for Property Model

* P.Micouin, Toward a property based requiremergsmyt System requirements structured as a serodatti
Systems Engineering, vol. Xl n°3, p235-245, 2008
® P. Micouin: Model Based Systems Engineering: Fumetetals and Methods, Wiley & ISTE (2014).
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Methodology). The PBR theory is based on the thebgyropertie$ due to the Canadian epistemologist
Mario A. Bunge.

PBR definition: the basic form of a PBR is as folto

PBR : [When C-] val(O.P) €D

This formula has to be read and understood astlmnving statementwhen the condition C is true, the
property P of the object O is actual and its vatmll belong to a domain Dwhere C is a relevant
condition for the system or its environment and rghilne domain D is a finite or infinite set such as
{0,1} or R™ (possibly linked to a frame and a physical unif)e concept of PBR can be implemented
directly as an assertion (boolean function) inaasisimulation languages.

Assumption definition: Assumptions are specific PBRs, limited to input properties since they are
outside the system'’s developer control and only presumed.

PBR conjunction: relying on Bunge's properties algebra, PBRs can be combined thanks to
conjunction operator “[T" in order to build composite PBRs.

PBR comparison: More, a partial order relationship “<” allows comparing two PBRs.

Thus, the expression “PBR1 OPBR2" is the conjunction of PBR1 and PBR2, and is itself a PBR.
Moreover, the statement “PBR1 < PBR2” means PBRL1 is less constraining than PBR2.

Specification model

System intended
effects

PBR
System unintended
effects

als

q;;uts J System Secandary outputs
Assumpti Specification Model BR

servable states
Indications

Status
PBR

Figure 5: specification model in PBR theory

oM. Bunge, Treatise on Basic Philosophy, vol 3, @yy I: The furniture of the World, D. Reidel Pwing
Compagny (1977).
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According to PMM, a system specification model idoamal model of a represented system that
includes

(1) system requirements (PBRS),

(2) system interface requirements (inputs and dstgefinition) and

(3) system assumptions (PBRSs).

System specification process: with PMM, it starfshwthe definition of goals, that is, the intended
effects that are identified and modelled as outpféithe system specification model. PMM proposes a
goal-oriented requirements development approach.net step is to elicit the occurrence conditiohs
the identified goals. The process of elicitatioal@as analysts to identify and model the expectpdts
and additional outputs, such as observable stsgesndary (undesired) outputs, secondary (undgsired
inputs and system failures.

Then, we formalize the result of the elicitation as one or several PBRs. PBRs are predicates that
link goals, secondary outputs, observable states and inputs in order to specify the actualization
conditions of system properties.

System requirement validation: The translationpafcification models into simulation models thanks t
adequate languages is a solution to make surepleatfication models and interfaces are consistent.
addition, simulation of a specification model lidkevith its corresponding equation design model
provides analysts with various advantages.
First, it is an assistance to guarantee the coemst and correctness of the considered system
specification model for a given set of validati@eisarios.
Simulation also provides capabilities for validgtiouilding block specification models regarding its
including system specification model.

Design and PBR derivation: For each candidate tstraicdesign model (PMM concept), the third system
development activity consists in the derivationtlud system requirements {PBRs} into building-block
requirements {PBR, PBR;}. To be valid, for a given system structural desigodel (A) and for a set of
assumptions on the environment (EA), the conjunctibderived building-blocks PBR..., PBR, must

be more constraining than the system PBRs.

Derivation when AA EA = PBR<PBRA ...\ PBR,

This validity condition of requirement derivation leads to the “prime contractor” theorem:

Prime contractor theorem: A sufficient conditiorr f@ system to comply with its PBRs is that its
building blocks comply with the PBRs validly deriidrom the system PBRs, provided the design
choices and assumptions made about the enviroranigittg the derivation remain valid.
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System Model
/ Specification Compliance status wet itial requirements
- - Model >
Low level specification model
validation wrt system Stucur Design |
- : Model |
fication model il e 2l
Compliance status wrt derived requiements
Specification sTidﬁwion Specification
Model [~ » Model [ » Model [~
Inodks Equation Design Equation Design Equation Design
o Model : Model Model =
Trmomv I1MVIDM12 O
SubSystem1 Model SubSystem2 Model SubSystem3 Model

Figure 6: low level specification model validatiorwrt system specification model

Derivation validation: with PBRs and PMM, simulation is the main method to validate the
derivation of system PBRs into a set of derived building block PBRs for validation scenarios.

_— Monitoring function

Compliance Status with Requirements

SPECIFICATION MODEL >
weurs || _ | Execution function
ouTPUTS
» DYNAMIC DESIGN MODEL >

Figure 7: monitoring function and execution functin

Design verification: Simulation also provides capabilities for verifying design models. While the
simulation is running, for all submitted simulation scenarios, the specification models monitor
the interacting design models so as to check whether any requirement is violated. If there is no
violation that is detected during the verification of a building block design model, then the
building block design model is verified.




Requirements and architecture within modelling eatht page 40

5.7.2 Requirement Tracker Artefacts

Yves Bernard (Airbus) has extended PBR theory Wi¢hRTA (Requirement Tracker Artifact)

approach This paper shows how the PBR definition giveriMigouin can be used as a pattern for
finding matching elements among UML native metas#aof a modeling language. Then, based on the
Micouin theory is possible to interpret any insiiof those metaclasses as a requirement. Thosergem
(so-called “RTA") are used for “tracking” requiremténformation within the model. Also, based onithe
semantics it possible to identify what kind of telaship among the selected metaclasses can be
interpreted as traceability links and how. The wsialof the modeling language for selecting the
metaclasses is essential. For some of them thsided$ obvious but for some other it may depemnds o
the way the modeling language is used and by tlye mvay depend on the modeling methodology that
will need to be precisely specified.

Once the list of RTA metaclasses is defined, lielatively easy to write queries that can be used f
parsing a model and identifying requirements. Iditaah the identification of the requirements ahdit
relationship, it is also possible to extract thecifications thereof and to translate them in “homa
readable” text. By interpreting the RTA metaclassssording to the UML semantics it is possible to
design a set of text boilerplates that can bedfilecording to the specific context of each RTAdnse.

In his paper Yves BERNARD gives an example of apion of this approach to the UML and give a list
of UML metaclasses matching the PBR pafterfere is a sample UML model used he defined for
illustration:

’ «interface»
DigitalWatch
g |_PushButton

@ + modeBtn: |_PushButton [0..1]
i + lightBtn: |_PushButton [1]
[ + setBtn: |_PushButton [1]

(5] + state: PushButtonState [1]

«Enumerations
[€3] pushButtonState

= DOWN
= UP

Figure 8: sample model - structure

’ Yves Bernard: Requirements management withinlarfablel-based engineering approach - nov 2011
& Note that, based on the development method usgtighmight require some adjustments
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s

SystemModes
beginning -
DisplayingTime ConfigurationON
\ => Configuration
J/do Activity
calculateAndDisplayTime
¢ ConfigurationOFF

Here is a possible translation into text of requieats identified directly from this sample modeé(RD
is simply the model element name). This transladmsed on a native UML interpretation but cdagd

Figure 9: sample model - modes

easily customized to be adapted to a specific damai

Req IC

Req Tex

Model_mcdelBtr

An item of type “DigitalWatch” shall have one optal “modelBtn”
port(s) of the “I_PushButton” type

Model_setBt

An item of type “DigitalWatch” shall have one andlyone “setBtn”
port(s) of the “|_PushButton” type

Model_lightBtr

An item of type “DigitalWatch” shall have one and only one “lightBt
port(s) of the “I_PushButton” type

Model_SystemMode

By invocation, and item of type “DigitalWatc

Model_MainRegio

The behavior described by the “SystemModes” statehine define
only one automation

Model_Transition

If the “SystemModes” state machine is in “Displayi&’ state, it sha
exit this state and enter the “Configuration” Staereception of event
“ConfigurationON”

Model_Transition

If the “SystemModes” state machine is in “Confiction” state, it car
exit this state and enter the “DisplayTime " Statereception of event
“ConfigurationOFF”

Model_DisplayTim:

The “SystemModes” state machine defines the “Digfilae” sut-
state(s).

Model_Configuratio

The “SystemModes” state machidefines the “Configuration” si-
state(s).

Model_displayTim

By invocation, an item of type “calculateAndDisplame” shall behav
as specified by its “displayTime” activity defiroti
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Model_beginnin The “SystemModes” state machine starts in the “@Time” (sub)
state
Model_stat A provider conforming to the “I_PushButton” inteciacontract sha

provide access to one and only one “state” refedo item(s) of the
“PushButtonState” type

With this approach, it becomes possible to use iBaea specification and to preserve traceability
analysis capabilities without creating manuallyttek requirements paraphrasing the model.

The main challenges of this approach are:

* To define the exact set of metaclasses that habe tsed for RTA identification. This set is
valid only in the context of the methodology on @it has been defined. If the methodology
changes, this set could be impacted.

* To define the transformation able to generate hureadable text equivalents for RTAs. Note
however that this translation is not mandatoryeiR@ As already have the concrete notation
(either graphical or not) used for defining thenthia model.
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